
UQ Winter School - The Basics, session 3

Kathryn Kemper

Objective
This practical session will review some of the key concepts in the handout 3_linearModels. Namely, start
with a review of variance, covariance and correlation from lecture 2 and highlight some useful properties of
variance that will be used later on the in practical. The the remainder of the session will focus on regression
using matrix notation and finally using lm() and predict.lm() in R. By the end of the session you should
be able to interpret the results from lm() and be able to reproduce many of the outputs by hand.

Q1: variance, covariance and correlation
Two variables, x and y, can show dependence on each other. That is, if we know the value of x we have
some understanding of the value of y. The dependence between the two variables can be quantified using
covariance (average sum of products) and correlation (a dimensionless value between 0 and 1). Covariance is
typically hard to interpret on its own but can be viewed as an intermediary to calculating more interesting
quantities, such as the correlation.

Q1. With the data provided, rename the data columns as x and y and calculate the variance, covariance and
correlation for them. Try doing this by-hand and comparing the result to var() and corr() function in R.
Create a new variable (z) which is the sum of x and y. What is the variance of z and how does this relate to
the variance of x and y?

Note that you will need to modify the code to read the following directory:
"dir=/data/module1/basicsSession3/"

# read in the data, and name columns 1 and 2 as x and y
a = read.table(paste0(dir,"2_Q4.txt"))
x = a[,1]
y = a[,2]
plot(y~x)
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# variance, covariance and correlation
n=length(x)
sum((x-mean(x))ˆ2)/(n-1)

## [1] 1.991952
var(x)

## [1] 1.991952
sum((y-mean(y))ˆ2)/(n-1)

## [1] 2.027531
var(y)

## [1] 2.027531
sum((y-mean(y))*(x-mean(x)))/(n-1)

## [1] 0.4704969
var(x,y)

## [1] 0.4704969
var(x,y)/sqrt(var(x)*var(y))

## [1] 0.2341174
cor(x,y)

## [1] 0.2341174

We will now make the new variable z = x+y and calculate its variance. A useful property is that the variance
of the sum of variables is the sum of all possible variances and covariances. i.e.

var(x+ y) = var(x) + var(y) + 2cov(x, y)
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#make a new variable z
z = x + y

#predict its variance, i.e. var(x+y) = var(x)+var(y)+2cov(x+y)
var(x) + var(y) + 2*cov(x,y)

## [1] 4.960477
# compared to the direct calculation of its variance
var(z)

## [1] 4.960477

Can you write your own function to calculate the covariance between two variables?
covariance<-function(x,y) {
mu1=mean(x)
mu2=mean(y)
n=length(x)
sum((x-mu1)*(y-mu2))/(n-1)

}
covariance(x,y)

## [1] 0.4704969

Other useful properties of variances, where X and Y are random variables and a and b are constants, include:
(1) V ar(x+ a) = V ar(x)
(2) V ar(ax) = a2V ar(x)
(3) V ar(aX + bY ) = a2V ar(X) + b2V ar(Y ) + 2abCov(X,Y )
(4) V ar(aX − bY ) = a2V ar(X) + b2V ar(Y ) − 2abCov(X,Y )

Q2: simple linear regression (SLR)
SLR means fitting a simple model regressing y on x, fitting an intercept and slope. Note that the independent
variable x is usually the ascertained or predictor variable. It is the variable influenced by experimental design.
y is the dependent or response variable.

Q2. Construct and find the regression co-efficients (intercept and slope) for the data provided in Q1. Calculate
the variance explained by the regression and plot the results. Compare your results to using the lm() function
in R.

As a reminder, the least squares equation for the regression co-efficient is:

β̂ = [X ′X]−1
X ′Y

n=length(y)
Y = matrix(y,ncol=1)

#set up X, our model only has the intercept (mean) plus 'x' variable
X1 = matrix(rep(1,n),ncol=1)
X2 = matrix(x,ncol=1)
X = cbind(X1,X2)

# set up the matrices
XpX = t(X)%*%X ; XpX
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## [,1] [,2]
## [1,] 1000.0000 987.5228
## [2,] 987.5228 2965.1611
XpXinv = solve(XpX)
XpY = t(X)%*%Y ; XpY

## [,1]
## [1,] 4979.309
## [2,] 5387.208

Here its useful to look at the matrices we have constructed and what they are doing. XpX (or X ′X) is a
symmetrical square 2x2 matrix with the following elements,
(1) X ′X1,1 = n
(2) X ′X1,2 = sum(x),
(3) X ′X2,2 = sum(x2)

XpY (or X ′Y ) is a 2x1 column vector with the following elements,
(1) X ′Y1,1 = sum(y)
(2) X ′Y2,1 = sum(y ∗ x)

For a full derivation of the equivalence between the scalar solution for β̂, i.e. β̂ = SSQxy

SSQx
and the least-squares

estimators in matrix form see page 5 of the following:
https://www.stat.purdue.edu/~boli/stat512/lectures/topic3.pdf

# solve
beta = XpXinv %*% XpY
beta

## [,1]
## [1,] 4.746057
## [2,] 0.236199

#lets compare our results to using lm()
lm1=lm(y~x)
summary(lm1)

##
## Call:
## lm(formula = y ~ x)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6501 -0.9534 0.0087 0.8941 4.1634
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.74606 0.05346 88.771 < 2e-16 ***
## x 0.23620 0.03105 7.607 6.45e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.385 on 998 degrees of freedom
## Multiple R-squared: 0.05481, Adjusted R-squared: 0.05386
## F-statistic: 57.87 on 1 and 998 DF, p-value: 6.449e-14

# plot our points and the regression line
plot(y~x, pch=20)

4

https://www.stat.purdue.edu/~boli/stat512/lectures/topic3.pdf


abline(a=beta[1],b=beta[2],col="green",lwd=1.5)

−2 0 2 4

2
4

6
8

x

y

Try plot(linearModelObject) at the command line to see R’s diagnostic plots of the residuals. In Q5 below
we will make the QQ-plot by hand.

Q3: model fit and s.e. of coefficients
Recall that model fit can be assessed by R2 as:

R2 = SSQreg

SSQtotal

where the SSQtotal and SSQreg are calculated in a very similar manner to the ANOVA test. Thus
SSQtotal =

∑
(y − ȳ)2, SSQresid =

∑
(y − ŷ)2 and SSQreg = SSQtot − SSQresid.

Q3. In your regression, what proportion of the variance in y is accounted for by x? Is this relationship
significant? What are the s.e. for your regression co-efficients.

#predicted values
H = X%*%XpXinv%*%t(X)
yHat = H%*%Y
# yHat = beta[1]+beta[2]*x # alternative
e = y - yHat

SSQreg = sum((yHat-mean(y))ˆ2)
SSQtot = sum((y-mean(y))ˆ2)
R2 = SSQreg/SSQtot ; R2

## [1] 0.05481095
#compare to the R output
summary(lm1)$r.squared
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## [1] 0.05481095

Note that the structure of an object in R can be accessed using str(object). Useful quantities associated
with the summary(linearModelObject) function of the linear model include the residuals, and the coefficients
table.

We will now conduct the F-test for the regression.
SSQe = SSQtot - SSQreg
F = SSQreg/(2-1) * (n-2)/SSQe ; F

## [1] 57.87342
1-pf(F,1,n-2)

## [1] 6.450396e-14

We saw in the lectures that the variance of the regression coefficients is given by:

var(β̂) = [X ′X]−1
σ2

e

The standard errors of the regression co-efficients are square-root of the diagonal elements of this variance-
covariance matrix.
sigmaE=sum(eˆ2)/(n-2)
Vcov = XpXinv*sigmaE
se = sqrt(diag(Vcov))

Which is in agreement with the coefficients table in summary(). From here we already know how to conduct
a t-test, and produce p-values. Hence,

tValue = beta/se
2*pt(tValue, df=998, lower.tail =FALSE)

## [,1]
## [1,] 0.000000e+00
## [2,] 6.448574e-14

Q4: s.e. for the predicted values
Q4. What is the s.e. around the predicted values. Plot 95% confidence intervals on your regression plot.

This problem requires determining var(Ŷ ), remembering that Ŷ = β̂0 + β̂1x and that each of our coefficients
has a standard error surrounding it.

Recall the property that V ar(aX + bY ) = a2V ar(X) + b2V ar(Y ) + 2abCov(X,Y ). We can use this property
to determine the variance of Ŷ as it is a simple linear combination of terms. Then

V ar(Ŷ ) = V ar(β̂0) + x2V ar(β̂1) + 2xcov(β̂0, β̂1)

95% confidence intervals are calculated as ŷ ± 1.96s.e. (can you recall why it is 1.96?). We show above the
calculation of the var(Ŷ ) and have already stored the variance-covariance matrix (‘Vcov’) from the previous
question. The final step is to define an x value range for the predictions and the CI. We can compare our
answer to the predict.lm() function in R.

#range over which we want to make confidence intervals
new = data.frame(x=seq(-3,5,0.1))
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# se of a predicted value
seYhat <- function(x) {
sqrt(Vcov[1,1] + xˆ2*Vcov[2,2] + 2*x*Vcov[1,2])

}

pred = beta[1] + beta[2]*new$x
seFit = seYhat(new$x)
upper = pred + qt(0.975,df=998)*seFit
lower = pred - qt(0.975,df=998)*seFit

#our s.e. of the predicted values
head(seFit)

## [1] 0.1313249 0.1284020 0.1254879 0.1225831 0.1196884 0.1168044
#using predict.lm() function
head(predict.lm(lm1,new,se.fit = TRUE)$se.fit)

## 1 2 3 4 5 6
## 0.1313249 0.1284020 0.1254879 0.1225831 0.1196884 0.1168044

# plot
plot(y~x, pch=".")
abline(a=beta[1],b=beta[2],col="blue",lwd=1.5)
points(upper~new$x,col="blue",lwd=1,lty=2,type="l")
points(lower~new$x,col="blue",lwd=1,lty=2,type="l")
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